Integrale di $$$a^{2} x^{2}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int a^{2} x^{2}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=a^{2}$$$ e $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{a^{2} x^{2} d x}}} = {\color{red}{a^{2} \int{x^{2} d x}}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$a^{2} {\color{red}{\int{x^{2} d x}}}=a^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=a^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Pertanto,
$$\int{a^{2} x^{2} d x} = \frac{a^{2} x^{3}}{3}$$
Aggiungi la costante di integrazione:
$$\int{a^{2} x^{2} d x} = \frac{a^{2} x^{3}}{3}+C$$
Risposta
$$$\int a^{2} x^{2}\, dx = \frac{a^{2} x^{3}}{3} + C$$$A