Integrale di $$$\frac{1}{x^{6}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{x^{6}}\, dx$$$.
Soluzione
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-6$$$:
$${\color{red}{\int{\frac{1}{x^{6}} d x}}}={\color{red}{\int{x^{-6} d x}}}={\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}={\color{red}{\left(- \frac{x^{-5}}{5}\right)}}={\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}$$
Pertanto,
$$\int{\frac{1}{x^{6}} d x} = - \frac{1}{5 x^{5}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{x^{6}} d x} = - \frac{1}{5 x^{5}}+C$$
Risposta
$$$\int \frac{1}{x^{6}}\, dx = - \frac{1}{5 x^{5}} + C$$$A