Integrale di $$$\frac{1}{y^{2}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{y^{2}}\, dy$$$.
Soluzione
Applica la regola della potenza $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{y^{2}} d y}}}={\color{red}{\int{y^{-2} d y}}}={\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- y^{-1}\right)}}={\color{red}{\left(- \frac{1}{y}\right)}}$$
Pertanto,
$$\int{\frac{1}{y^{2}} d y} = - \frac{1}{y}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{y^{2}} d y} = - \frac{1}{y}+C$$
Risposta
$$$\int \frac{1}{y^{2}}\, dy = - \frac{1}{y} + C$$$A
Please try a new game Rotatly