Integrale di $$$\frac{1}{\left(x - 1\right)^{5}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\left(x - 1\right)^{5}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\left(x - 1\right)^{5}}\, dx$$$.

Soluzione

Sia $$$u=x - 1$$$.

Quindi $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

Quindi,

$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{5}} d x}}} = {\color{red}{\int{\frac{1}{u^{5}} d u}}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-5$$$:

$${\color{red}{\int{\frac{1}{u^{5}} d u}}}={\color{red}{\int{u^{-5} d u}}}={\color{red}{\frac{u^{-5 + 1}}{-5 + 1}}}={\color{red}{\left(- \frac{u^{-4}}{4}\right)}}={\color{red}{\left(- \frac{1}{4 u^{4}}\right)}}$$

Ricordiamo che $$$u=x - 1$$$:

$$- \frac{{\color{red}{u}}^{-4}}{4} = - \frac{{\color{red}{\left(x - 1\right)}}^{-4}}{4}$$

Pertanto,

$$\int{\frac{1}{\left(x - 1\right)^{5}} d x} = - \frac{1}{4 \left(x - 1\right)^{4}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\left(x - 1\right)^{5}} d x} = - \frac{1}{4 \left(x - 1\right)^{4}}+C$$

Risposta

$$$\int \frac{1}{\left(x - 1\right)^{5}}\, dx = - \frac{1}{4 \left(x - 1\right)^{4}} + C$$$A


Please try a new game Rotatly