Integral of $$$\frac{1}{\left(x - 1\right)^{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\left(x - 1\right)^{5}}\, dx$$$.
Solution
Let $$$u=x - 1$$$.
Then $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral becomes
$${\color{red}{\int{\frac{1}{\left(x - 1\right)^{5}} d x}}} = {\color{red}{\int{\frac{1}{u^{5}} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-5$$$:
$${\color{red}{\int{\frac{1}{u^{5}} d u}}}={\color{red}{\int{u^{-5} d u}}}={\color{red}{\frac{u^{-5 + 1}}{-5 + 1}}}={\color{red}{\left(- \frac{u^{-4}}{4}\right)}}={\color{red}{\left(- \frac{1}{4 u^{4}}\right)}}$$
Recall that $$$u=x - 1$$$:
$$- \frac{{\color{red}{u}}^{-4}}{4} = - \frac{{\color{red}{\left(x - 1\right)}}^{-4}}{4}$$
Therefore,
$$\int{\frac{1}{\left(x - 1\right)^{5}} d x} = - \frac{1}{4 \left(x - 1\right)^{4}}$$
Add the constant of integration:
$$\int{\frac{1}{\left(x - 1\right)^{5}} d x} = - \frac{1}{4 \left(x - 1\right)^{4}}+C$$
Answer
$$$\int \frac{1}{\left(x - 1\right)^{5}}\, dx = - \frac{1}{4 \left(x - 1\right)^{4}} + C$$$A