Integrale di $$$\frac{1}{256 x^{16}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{256 x^{16}}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{256}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{16}}$$$:
$${\color{red}{\int{\frac{1}{256 x^{16}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{16}} d x}}{256}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-16$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{16}} d x}}}}{256}=\frac{{\color{red}{\int{x^{-16} d x}}}}{256}=\frac{{\color{red}{\frac{x^{-16 + 1}}{-16 + 1}}}}{256}=\frac{{\color{red}{\left(- \frac{x^{-15}}{15}\right)}}}{256}=\frac{{\color{red}{\left(- \frac{1}{15 x^{15}}\right)}}}{256}$$
Pertanto,
$$\int{\frac{1}{256 x^{16}} d x} = - \frac{1}{3840 x^{15}}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{256 x^{16}} d x} = - \frac{1}{3840 x^{15}}+C$$
Risposta
$$$\int \frac{1}{256 x^{16}}\, dx = - \frac{1}{3840 x^{15}} + C$$$A