Integral of $$$\frac{1}{256 x^{16}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{256 x^{16}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{256}$$$ and $$$f{\left(x \right)} = \frac{1}{x^{16}}$$$:
$${\color{red}{\int{\frac{1}{256 x^{16}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{16}} d x}}{256}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-16$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{16}} d x}}}}{256}=\frac{{\color{red}{\int{x^{-16} d x}}}}{256}=\frac{{\color{red}{\frac{x^{-16 + 1}}{-16 + 1}}}}{256}=\frac{{\color{red}{\left(- \frac{x^{-15}}{15}\right)}}}{256}=\frac{{\color{red}{\left(- \frac{1}{15 x^{15}}\right)}}}{256}$$
Therefore,
$$\int{\frac{1}{256 x^{16}} d x} = - \frac{1}{3840 x^{15}}$$
Add the constant of integration:
$$\int{\frac{1}{256 x^{16}} d x} = - \frac{1}{3840 x^{15}}+C$$
Answer
$$$\int \frac{1}{256 x^{16}}\, dx = - \frac{1}{3840 x^{15}} + C$$$A