Seconda derivata di $$$5^{x}$$$
Calcolatrici correlate: Calcolatore di derivate, Calcolatrice di derivazione logaritmica
Il tuo input
Trova $$$\frac{d^{2}}{dx^{2}} \left(5^{x}\right)$$$.
Soluzione
Trova la derivata prima $$$\frac{d}{dx} \left(5^{x}\right)$$$
Applica la regola degli esponenti $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ con $$$n = 5$$$:
$${\color{red}\left(\frac{d}{dx} \left(5^{x}\right)\right)} = {\color{red}\left(5^{x} \ln\left(5\right)\right)}$$Quindi, $$$\frac{d}{dx} \left(5^{x}\right) = 5^{x} \ln\left(5\right)$$$.
Successivamente, $$$\frac{d^{2}}{dx^{2}} \left(5^{x}\right) = \frac{d}{dx} \left(5^{x} \ln\left(5\right)\right)$$$
Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \ln\left(5\right)$$$ e $$$f{\left(x \right)} = 5^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(5^{x} \ln\left(5\right)\right)\right)} = {\color{red}\left(\ln\left(5\right) \frac{d}{dx} \left(5^{x}\right)\right)}$$Applica la regola degli esponenti $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ con $$$n = 5$$$:
$$\ln\left(5\right) {\color{red}\left(\frac{d}{dx} \left(5^{x}\right)\right)} = \ln\left(5\right) {\color{red}\left(5^{x} \ln\left(5\right)\right)}$$Quindi, $$$\frac{d}{dx} \left(5^{x} \ln\left(5\right)\right) = 5^{x} \ln^{2}\left(5\right)$$$.
Pertanto, $$$\frac{d^{2}}{dx^{2}} \left(5^{x}\right) = 5^{x} \ln^{2}\left(5\right)$$$.
Risposta
$$$\frac{d^{2}}{dx^{2}} \left(5^{x}\right) = 5^{x} \ln^{2}\left(5\right)$$$A