Integral dari $$$\frac{x}{y}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{x}{y}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{y}$$$ dan $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{\frac{x}{y} d x}}} = {\color{red}{\frac{\int{x d x}}{y}}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$\frac{{\color{red}{\int{x d x}}}}{y}=\frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{y}=\frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{y}$$
Oleh karena itu,
$$\int{\frac{x}{y} d x} = \frac{x^{2}}{2 y}$$
Tambahkan konstanta integrasi:
$$\int{\frac{x}{y} d x} = \frac{x^{2}}{2 y}+C$$
Jawaban
$$$\int \frac{x}{y}\, dx = \frac{x^{2}}{2 y} + C$$$A