Integral dari $$$8 \sin^{3}{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 8 \sin^{3}{\left(x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=8$$$ dan $$$f{\left(x \right)} = \sin^{3}{\left(x \right)}$$$:
$${\color{red}{\int{8 \sin^{3}{\left(x \right)} d x}}} = {\color{red}{\left(8 \int{\sin^{3}{\left(x \right)} d x}\right)}}$$
Faktorkan satu sinus dan nyatakan sisanya dalam kosinus, menggunakan rumus $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ dengan $$$\alpha=x$$$:
$$8 {\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$
Misalkan $$$u=\cos{\left(x \right)}$$$.
Kemudian $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(x \right)} dx = - du$$$.
Integral tersebut dapat ditulis ulang sebagai
$$8 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = 8 {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Integralkan suku demi suku:
$$- 8 {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - 8 {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$$8 \int{u^{2} d u} - 8 {\color{red}{\int{1 d u}}} = 8 \int{u^{2} d u} - 8 {\color{red}{u}}$$
Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$- 8 u + 8 {\color{red}{\int{u^{2} d u}}}=- 8 u + 8 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 8 u + 8 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Ingat bahwa $$$u=\cos{\left(x \right)}$$$:
$$- 8 {\color{red}{u}} + \frac{8 {\color{red}{u}}^{3}}{3} = - 8 {\color{red}{\cos{\left(x \right)}}} + \frac{8 {\color{red}{\cos{\left(x \right)}}}^{3}}{3}$$
Oleh karena itu,
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \cos^{3}{\left(x \right)}}{3} - 8 \cos{\left(x \right)}$$
Sederhanakan:
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3}$$
Tambahkan konstanta integrasi:
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3}+C$$
Jawaban
$$$\int 8 \sin^{3}{\left(x \right)}\, dx = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3} + C$$$A