Integral of $$$8 \sin^{3}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 8 \sin^{3}{\left(x \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=8$$$ and $$$f{\left(x \right)} = \sin^{3}{\left(x \right)}$$$:
$${\color{red}{\int{8 \sin^{3}{\left(x \right)} d x}}} = {\color{red}{\left(8 \int{\sin^{3}{\left(x \right)} d x}\right)}}$$
Strip out one sine and write everything else in terms of the cosine, using the formula $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$ with $$$\alpha=x$$$:
$$8 {\color{red}{\int{\sin^{3}{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}}$$
Let $$$u=\cos{\left(x \right)}$$$.
Then $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\sin{\left(x \right)} dx = - du$$$.
Thus,
$$8 {\color{red}{\int{\left(1 - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} d x}}} = 8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = 1 - u^{2}$$$:
$$8 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = 8 {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}$$
Integrate term by term:
$$- 8 {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - 8 {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$8 \int{u^{2} d u} - 8 {\color{red}{\int{1 d u}}} = 8 \int{u^{2} d u} - 8 {\color{red}{u}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- 8 u + 8 {\color{red}{\int{u^{2} d u}}}=- 8 u + 8 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 8 u + 8 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=\cos{\left(x \right)}$$$:
$$- 8 {\color{red}{u}} + \frac{8 {\color{red}{u}}^{3}}{3} = - 8 {\color{red}{\cos{\left(x \right)}}} + \frac{8 {\color{red}{\cos{\left(x \right)}}}^{3}}{3}$$
Therefore,
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \cos^{3}{\left(x \right)}}{3} - 8 \cos{\left(x \right)}$$
Simplify:
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3}$$
Add the constant of integration:
$$\int{8 \sin^{3}{\left(x \right)} d x} = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3}+C$$
Answer
$$$\int 8 \sin^{3}{\left(x \right)}\, dx = \frac{8 \left(\cos^{2}{\left(x \right)} - 3\right) \cos{\left(x \right)}}{3} + C$$$A