Integral dari $$$4 \cos^{4}{\left(\frac{\theta}{2} \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 4 \cos^{4}{\left(\frac{\theta}{2} \right)}\, d\theta$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ dengan $$$c=4$$$ dan $$$f{\left(\theta \right)} = \cos^{4}{\left(\frac{\theta}{2} \right)}$$$:
$${\color{red}{\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}}} = {\color{red}{\left(4 \int{\cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}\right)}}$$
Misalkan $$$u=\frac{\theta}{2}$$$.
Kemudian $$$du=\left(\frac{\theta}{2}\right)^{\prime }d\theta = \frac{d\theta}{2}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$d\theta = 2 du$$$.
Integral tersebut dapat ditulis ulang sebagai
$$4 {\color{red}{\int{\cos^{4}{\left(\frac{\theta}{2} \right)} d \theta}}} = 4 {\color{red}{\int{2 \cos^{4}{\left(u \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \cos^{4}{\left(u \right)}$$$:
$$4 {\color{red}{\int{2 \cos^{4}{\left(u \right)} d u}}} = 4 {\color{red}{\left(2 \int{\cos^{4}{\left(u \right)} d u}\right)}}$$
Terapkan rumus reduksi pangkat $$$\cos^{4}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8}$$$ dengan $$$\alpha= u $$$:
$$8 {\color{red}{\int{\cos^{4}{\left(u \right)} d u}}} = 8 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{8}$$$ dan $$$f{\left(u \right)} = 4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3$$$:
$$8 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{\cos{\left(4 u \right)}}{8} + \frac{3}{8}\right)d u}}} = 8 {\color{red}{\left(\frac{\int{\left(4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}{8}\right)}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(4 \cos{\left(2 u \right)} + \cos{\left(4 u \right)} + 3\right)d u}}} = {\color{red}{\left(\int{3 d u} + \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u}\right)}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=3$$$:
$$\int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\int{3 d u}}} = \int{4 \cos{\left(2 u \right)} d u} + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\left(3 u\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=4$$$ dan $$$f{\left(u \right)} = \cos{\left(2 u \right)}$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\int{4 \cos{\left(2 u \right)} d u}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + {\color{red}{\left(4 \int{\cos{\left(2 u \right)} d u}\right)}}$$
Misalkan $$$v=2 u$$$.
Kemudian $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = \frac{dv}{2}$$$.
Integral tersebut dapat ditulis ulang sebagai
$$3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 4 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 2 {\color{red}{\int{\cos{\left(v \right)} d v}}} = 3 u + \int{\cos{\left(4 u \right)} d u} + 2 {\color{red}{\sin{\left(v \right)}}}$$
Ingat bahwa $$$v=2 u$$$:
$$3 u + \int{\cos{\left(4 u \right)} d u} + 2 \sin{\left({\color{red}{v}} \right)} = 3 u + \int{\cos{\left(4 u \right)} d u} + 2 \sin{\left({\color{red}{\left(2 u\right)}} \right)}$$
Misalkan $$$v=4 u$$$.
Kemudian $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = \frac{dv}{4}$$$.
Oleh karena itu,
$$3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\cos{\left(4 u \right)} d u}}} = 3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{4}$$$ dan $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\int{\frac{\cos{\left(v \right)}}{4} d v}}} = 3 u + 2 \sin{\left(2 u \right)} + {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{4}\right)}}$$
Integral dari kosinus adalah $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$3 u + 2 \sin{\left(2 u \right)} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = 3 u + 2 \sin{\left(2 u \right)} + \frac{{\color{red}{\sin{\left(v \right)}}}}{4}$$
Ingat bahwa $$$v=4 u$$$:
$$3 u + 2 \sin{\left(2 u \right)} + \frac{\sin{\left({\color{red}{v}} \right)}}{4} = 3 u + 2 \sin{\left(2 u \right)} + \frac{\sin{\left({\color{red}{\left(4 u\right)}} \right)}}{4}$$
Ingat bahwa $$$u=\frac{\theta}{2}$$$:
$$2 \sin{\left(2 {\color{red}{u}} \right)} + \frac{\sin{\left(4 {\color{red}{u}} \right)}}{4} + 3 {\color{red}{u}} = 2 \sin{\left(2 {\color{red}{\left(\frac{\theta}{2}\right)}} \right)} + \frac{\sin{\left(4 {\color{red}{\left(\frac{\theta}{2}\right)}} \right)}}{4} + 3 {\color{red}{\left(\frac{\theta}{2}\right)}}$$
Oleh karena itu,
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{3 \theta}{2} + 2 \sin{\left(\theta \right)} + \frac{\sin{\left(2 \theta \right)}}{4}$$
Sederhanakan:
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4}$$
Tambahkan konstanta integrasi:
$$\int{4 \cos^{4}{\left(\frac{\theta}{2} \right)} d \theta} = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4}+C$$
Jawaban
$$$\int 4 \cos^{4}{\left(\frac{\theta}{2} \right)}\, d\theta = \frac{6 \theta + 8 \sin{\left(\theta \right)} + \sin{\left(2 \theta \right)}}{4} + C$$$A