Integral dari $$$2 e^{- x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$2 e^{- x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int 2 e^{- x}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = e^{- x}$$$:

$${\color{red}{\int{2 e^{- x} d x}}} = {\color{red}{\left(2 \int{e^{- x} d x}\right)}}$$

Misalkan $$$u=- x$$$.

Kemudian $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = - du$$$.

Integral tersebut dapat ditulis ulang sebagai

$$2 {\color{red}{\int{e^{- x} d x}}} = 2 {\color{red}{\int{\left(- e^{u}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = e^{u}$$$:

$$2 {\color{red}{\int{\left(- e^{u}\right)d u}}} = 2 {\color{red}{\left(- \int{e^{u} d u}\right)}}$$

Integral dari fungsi eksponensial adalah $$$\int{e^{u} d u} = e^{u}$$$:

$$- 2 {\color{red}{\int{e^{u} d u}}} = - 2 {\color{red}{e^{u}}}$$

Ingat bahwa $$$u=- x$$$:

$$- 2 e^{{\color{red}{u}}} = - 2 e^{{\color{red}{\left(- x\right)}}}$$

Oleh karena itu,

$$\int{2 e^{- x} d x} = - 2 e^{- x}$$

Tambahkan konstanta integrasi:

$$\int{2 e^{- x} d x} = - 2 e^{- x}+C$$

Jawaban

$$$\int 2 e^{- x}\, dx = - 2 e^{- x} + C$$$A


Please try a new game Rotatly