Integral dari $$$\frac{1}{2 y}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{2 y}\, dy$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(y \right)} = \frac{1}{y}$$$:
$${\color{red}{\int{\frac{1}{2 y} d y}}} = {\color{red}{\left(\frac{\int{\frac{1}{y} d y}}{2}\right)}}$$
Integral dari $$$\frac{1}{y}$$$ adalah $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{y} d y}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{y}\right| \right)}}}}{2}$$
Oleh karena itu,
$$\int{\frac{1}{2 y} d y} = \frac{\ln{\left(\left|{y}\right| \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{2 y} d y} = \frac{\ln{\left(\left|{y}\right| \right)}}{2}+C$$
Jawaban
$$$\int \frac{1}{2 y}\, dy = \frac{\ln\left(\left|{y}\right|\right)}{2} + C$$$A