Kalkulator Integral Tentu dan Tak Wajar
Hitung integral tentu dan tak wajar langkah demi langkah
Kalkulator akan mencoba mengevaluasi integral tentu (yaitu dengan batas-batas), termasuk integral tak wajar, dengan menampilkan langkah-langkahnya.
Solution
Your input: calculate $$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{\sin{\left(x \right)}}{x} d x}=\operatorname{Si}{\left(x \right)}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t\right)}=\operatorname{Si}{\left(t \right)}$$$
$$$\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t^{2}\right)}=\operatorname{Si}{\left(t^{2} \right)}$$$
$$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx=\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t\right)}-\left(\operatorname{Si}{\left(x \right)}\right)|_{\left(x=t^{2}\right)}=\operatorname{Si}{\left(t \right)} - \operatorname{Si}{\left(t^{2} \right)}$$$
Answer: $$$\int_{t^{2}}^{t}\left( \frac{\sin{\left(x \right)}}{x} \right)dx=\operatorname{Si}{\left(t \right)} - \operatorname{Si}{\left(t^{2} \right)}$$$