Kalkulator Integral Tentu dan Tak Wajar

Hitung integral tentu dan tak wajar langkah demi langkah

Kalkulator akan mencoba mengevaluasi integral tentu (yaitu dengan batas-batas), termasuk integral tak wajar, dengan menampilkan langkah-langkahnya.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{7}^{49}\left( \frac{1}{x \ln{\left(x \right)}^{9}} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\frac{1}{x \ln{\left(x \right)}^{9}} d x}=- \frac{1}{8 \ln{\left(x \right)}^{8}}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- \frac{1}{8 \ln{\left(x \right)}^{8}}\right)|_{\left(x=49\right)}=- \frac{1}{8 \ln{\left(49 \right)}^{8}}$$$

$$$\left(- \frac{1}{8 \ln{\left(x \right)}^{8}}\right)|_{\left(x=7\right)}=- \frac{1}{8 \ln{\left(7 \right)}^{8}}$$$

$$$\int_{7}^{49}\left( \frac{1}{x \ln{\left(x \right)}^{9}} \right)dx=\left(- \frac{1}{8 \ln{\left(x \right)}^{8}}\right)|_{\left(x=49\right)}-\left(- \frac{1}{8 \ln{\left(x \right)}^{8}}\right)|_{\left(x=7\right)}=- \frac{1}{8 \ln{\left(49 \right)}^{8}} + \frac{1}{8 \ln{\left(7 \right)}^{8}}$$$

Answer: $$$\int_{7}^{49}\left( \frac{1}{x \ln{\left(x \right)}^{9}} \right)dx=- \frac{1}{8 \ln{\left(49 \right)}^{8}} + \frac{1}{8 \ln{\left(7 \right)}^{8}}\approx 0.000605658703782548$$$


Please try a new game Rotatly