Kalkulator Integral Tentu dan Tak Wajar

Hitung integral tentu dan tak wajar langkah demi langkah

Kalkulator akan mencoba mengevaluasi integral tentu (yaitu dengan batas-batas), termasuk integral tak wajar, dengan menampilkan langkah-langkahnya.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{2}\left( \pi \sin{\left(x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\pi \sin{\left(x \right)} d x}=- \pi \cos{\left(x \right)}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- \pi \cos{\left(x \right)}\right)|_{\left(x=2\right)}=- \pi \cos{\left(2 \right)}$$$

$$$\left(- \pi \cos{\left(x \right)}\right)|_{\left(x=0\right)}=- \pi$$$

$$$\int_{0}^{2}\left( \pi \sin{\left(x \right)} \right)dx=\left(- \pi \cos{\left(x \right)}\right)|_{\left(x=2\right)}-\left(- \pi \cos{\left(x \right)}\right)|_{\left(x=0\right)}=- \pi \cos{\left(2 \right)} + \pi$$$

Answer: $$$\int_{0}^{2}\left( \pi \sin{\left(x \right)} \right)dx=- \pi \cos{\left(2 \right)} + \pi\approx 4.44895649810093$$$


Please try a new game Rotatly