Kalkulator Integral Tentu dan Tak Wajar

Hitung integral tentu dan tak wajar langkah demi langkah

Kalkulator akan mencoba mengevaluasi integral tentu (yaitu dengan batas-batas), termasuk integral tak wajar, dengan menampilkan langkah-langkahnya.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{1}\left( e^{- x^{2}} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{e^{- x^{2}} d x}=\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=1\right)}=\frac{\sqrt{\pi} \operatorname{erf}{\left(1 \right)}}{2}$$$

$$$\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{1}\left( e^{- x^{2}} \right)dx=\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=1\right)}-\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)|_{\left(x=0\right)}=\frac{\sqrt{\pi} \operatorname{erf}{\left(1 \right)}}{2}$$$

Answer: $$$\int_{0}^{1}\left( e^{- x^{2}} \right)dx=\frac{\sqrt{\pi} \operatorname{erf}{\left(1 \right)}}{2}\approx 0.746824132812427$$$


Please try a new game Rotatly