Kalkulator Integral Tentu dan Tak Wajar
Hitung integral tentu dan tak wajar langkah demi langkah
Kalkulator akan mencoba mengevaluasi integral tentu (yaitu dengan batas-batas), termasuk integral tak wajar, dengan menampilkan langkah-langkahnya.
Solution
Your input: calculate $$$\int_{-1}^{1}\left( b d m o x \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{b d m o x d x}=\frac{b d m o x^{2}}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{b d m o x^{2}}{2}\right)|_{\left(x=1\right)}=\frac{b d m o}{2}$$$
$$$\left(\frac{b d m o x^{2}}{2}\right)|_{\left(x=-1\right)}=\frac{b d m o}{2}$$$
$$$\int_{-1}^{1}\left( b d m o x \right)dx=\left(\frac{b d m o x^{2}}{2}\right)|_{\left(x=1\right)}-\left(\frac{b d m o x^{2}}{2}\right)|_{\left(x=-1\right)}=0$$$
Answer: $$$\int_{-1}^{1}\left( b d m o x \right)dx=0$$$