Identifikasi irisan kerucut $$$12 - 9 x^{2} = - \frac{3 x^{2}}{13} - 16 x + 1$$$
Kalkulator terkait: Kalkulator Parabola, Kalkulator Lingkaran, Kalkulator Elips, Kalkulator Hiperbola
Masukan Anda
Identifikasi dan temukan sifat-sifat irisan kerucut $$$12 - 9 x^{2} = - \frac{3 x^{2}}{13} - 16 x + 1$$$.
Solusi
Persamaan umum suatu irisan kerucut adalah $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Dalam kasus kita, $$$A = \frac{114}{13}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -16$$$, $$$E = 0$$$, $$$F = -11$$$.
Diskriminan irisan kerucut adalah $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Selanjutnya, $$$B^{2} - 4 A C = 0$$$.
Karena $$$\Delta = 0$$$, ini adalah irisan kerucut degenerat.
Karena $$$B^{2} - 4 A C = 0$$$, persamaan tersebut menyatakan dua garis sejajar.
Jawaban
$$$12 - 9 x^{2} = - \frac{3 x^{2}}{13} - 16 x + 1$$$A menyatakan sepasang garis $$$x = - \frac{-104 + \sqrt{27118}}{114}$$$, $$$x = \frac{104 + \sqrt{27118}}{114}$$$A.
Bentuk umum: $$$\frac{114 x^{2}}{13} - 16 x - 11 = 0$$$A.
Bentuk terfaktorkan: $$$\left(114 x - 104 + \sqrt{27118}\right) \left(114 x - \sqrt{27118} - 104\right) = 0$$$A.
Grafik: lihat kalkulator grafik.