Réciproque de $$$\left[\begin{array}{cc}2 & 1\\1 & 3\end{array}\right]$$$
Calculatrices associées: Calculatrice d'élimination de Gauss-Jordan, Calculatrice de pseudo-inverse
Votre saisie
Calculez $$$\left[\begin{array}{cc}2 & 1\\1 & 3\end{array}\right]^{-1}$$$ en utilisant l'élimination de Gauss-Jordan.
Solution
Pour trouver la matrice inverse, formez la matrice augmentée avec la matrice identité et effectuez des opérations élémentaires sur les lignes afin d’obtenir la matrice identité à gauche. La matrrice située à droite sera alors l’inverse.
Donc, augmentez la matrice par la matrice identité :
$$$\left[\begin{array}{cc|cc}2 & 1 & 1 & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
Divisez la ligne $$$1$$$ par $$$2$$$ : $$$R_{1} = \frac{R_{1}}{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\1 & 3 & 0 & 1\end{array}\right]$$$
Soustraire la ligne $$$1$$$ à la ligne $$$2$$$: $$$R_{2} = R_{2} - R_{1}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & \frac{5}{2} & - \frac{1}{2} & 1\end{array}\right]$$$
Multipliez la ligne $$$2$$$ par $$$\frac{2}{5}$$$ : $$$R_{2} = \frac{2 R_{2}}{5}$$$.
$$$\left[\begin{array}{cc|cc}1 & \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
Soustraire $$$\frac{1}{2}$$$ fois la ligne $$$2$$$ à la ligne $$$1$$$: $$$R_{1} = R_{1} - \frac{R_{2}}{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & 0 & \frac{3}{5} & - \frac{1}{5}\\0 & 1 & - \frac{1}{5} & \frac{2}{5}\end{array}\right]$$$
Nous avons terminé. À gauche se trouve la matrice identité. À droite se trouve la matrice inverse.
Réponse
La matrice inverse est $$$\left[\begin{array}{cc}\frac{3}{5} & - \frac{1}{5}\\- \frac{1}{5} & \frac{2}{5}\end{array}\right] = \left[\begin{array}{cc}0.6 & -0.2\\-0.2 & 0.4\end{array}\right].$$$A