Réciproque de $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$
Calculatrices associées: Calculatrice d'élimination de Gauss-Jordan, Calculatrice de pseudo-inverse
Votre saisie
Calculez $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]^{-1}$$$ en utilisant l'élimination de Gauss-Jordan.
Solution
Pour trouver la matrice inverse, formez la matrice augmentée avec la matrice identité et effectuez des opérations élémentaires sur les lignes afin d’obtenir la matrice identité à gauche. La matrrice située à droite sera alors l’inverse.
Donc, augmentez la matrice par la matrice identité :
$$$\left[\begin{array}{cc|cc}1 & 2 & 1 & 0\\3 & 4 & 0 & 1\end{array}\right]$$$
Soustraire $$$3$$$ fois la ligne $$$1$$$ à la ligne $$$2$$$: $$$R_{2} = R_{2} - 3 R_{1}$$$.
$$$\left[\begin{array}{cc|cc}1 & 2 & 1 & 0\\0 & -2 & -3 & 1\end{array}\right]$$$
Divisez la ligne $$$2$$$ par $$$-2$$$ : $$$R_{2} = - \frac{R_{2}}{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & 2 & 1 & 0\\0 & 1 & \frac{3}{2} & - \frac{1}{2}\end{array}\right]$$$
Soustraire $$$2$$$ fois la ligne $$$2$$$ à la ligne $$$1$$$: $$$R_{1} = R_{1} - 2 R_{2}$$$.
$$$\left[\begin{array}{cc|cc}1 & 0 & -2 & 1\\0 & 1 & \frac{3}{2} & - \frac{1}{2}\end{array}\right]$$$
Nous avons terminé. À gauche se trouve la matrice identité. À droite se trouve la matrice inverse.
Réponse
La matrice inverse est $$$\left[\begin{array}{cc}-2 & 1\\\frac{3}{2} & - \frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}-2 & 1\\1.5 & -0.5\end{array}\right].$$$A