Valeurs propres et vecteurs propres de $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$

La calculatrice trouvera les valeurs propres et les vecteurs propres de la matrice carrée $$$2$$$x$$$2$$$ $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$, en montrant les étapes.

Calculatrice associée: Calculatrice de polynôme caractéristique

A

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Trouvez les valeurs propres et les vecteurs propres de $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$.

Solution

Commencez par former une nouvelle matrice en soustrayant $$$\lambda$$$ aux éléments de la diagonale de la matrice donnée : $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right]$$$.

Le déterminant de la matrice obtenue est $$$\left(\lambda - 1\right) \left(\lambda + 2\right)$$$ (pour les étapes, voir calculatrice de déterminant).

Résoudre l’équation $$$\left(\lambda - 1\right) \left(\lambda + 2\right) = 0$$$.

Les racines sont $$$\lambda_{1} = 1$$$, $$$\lambda_{2} = -2$$$ (pour les étapes, voir solveur d'équations).

Ce sont les valeurs propres.

Ensuite, trouvez les vecteurs propres.

  • $$$\lambda = 1$$$

    $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}2 & -10\\1 & -5\end{array}\right]$$$

    L’espace nul de cette matrice est $$$\left\{\left[\begin{array}{c}5\\1\end{array}\right]\right\}$$$ (pour les étapes, voir calculatrice de l’espace nul).

    C'est le vecteur propre.

  • $$$\lambda = -2$$$

    $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}5 & -10\\1 & -2\end{array}\right]$$$

    L’espace nul de cette matrice est $$$\left\{\left[\begin{array}{c}2\\1\end{array}\right]\right\}$$$ (pour les étapes, voir calculatrice de l’espace nul).

    C'est le vecteur propre.

Réponse

Valeur propre : $$$1$$$A, multiplicité : $$$1$$$A, vecteurs propres : $$$\left[\begin{array}{c}5\\1\end{array}\right]$$$A.

Valeur propre : $$$-2$$$A, multiplicité : $$$1$$$A, vecteurs propres : $$$\left[\begin{array}{c}2\\1\end{array}\right]$$$A.


Please try a new game Rotatly