Intégrale de $$$- t^{2} + 2 z^{20}$$$ par rapport à $$$t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- t^{2} + 2 z^{20}\right)\, dt$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- t^{2} + 2 z^{20}\right)d t}}} = {\color{red}{\left(- \int{t^{2} d t} + \int{2 z^{20} d t}\right)}}$$
Appliquer la règle de puissance $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$\int{2 z^{20} d t} - {\color{red}{\int{t^{2} d t}}}=\int{2 z^{20} d t} - {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=\int{2 z^{20} d t} - {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dt = c t$$$ avec $$$c=2 z^{20}$$$:
$$- \frac{t^{3}}{3} + {\color{red}{\int{2 z^{20} d t}}} = - \frac{t^{3}}{3} + {\color{red}{\left(2 t z^{20}\right)}}$$
Par conséquent,
$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = - \frac{t^{3}}{3} + 2 t z^{20}$$
Simplifier:
$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3}$$
Ajouter la constante d'intégration :
$$\int{\left(- t^{2} + 2 z^{20}\right)d t} = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3}+C$$
Réponse
$$$\int \left(- t^{2} + 2 z^{20}\right)\, dt = \frac{t \left(- t^{2} + 6 z^{20}\right)}{3} + C$$$A