Intégrale de $$$x \sin{\left(x^{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int x \sin{\left(x^{2} \right)}\, dx$$$.
Solution
Soit $$$u=x^{2}$$$.
Alors $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.
Ainsi,
$${\color{red}{\int{x \sin{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Rappelons que $$$u=x^{2}$$$ :
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2} = - \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2}$$
Par conséquent,
$$\int{x \sin{\left(x^{2} \right)} d x} = - \frac{\cos{\left(x^{2} \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{x \sin{\left(x^{2} \right)} d x} = - \frac{\cos{\left(x^{2} \right)}}{2}+C$$
Réponse
$$$\int x \sin{\left(x^{2} \right)}\, dx = - \frac{\cos{\left(x^{2} \right)}}{2} + C$$$A