Intégrale de $$$\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx$$$.
Solution
Soit $$$u=1 - \frac{1}{x}$$$.
Alors $$$du=\left(1 - \frac{1}{x}\right)^{\prime }dx = \frac{dx}{x^{2}}$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{x^{2}} = du$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{1}{2}$$$ :
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Rappelons que $$$u=1 - \frac{1}{x}$$$ :
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(1 - \frac{1}{x}\right)}}^{\frac{3}{2}}}{3}$$
Par conséquent,
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(1 - \frac{1}{x}\right)^{\frac{3}{2}}}{3}$$
Simplifier:
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sqrt{1 - \frac{1}{x}}}{x^{2}} d x} = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3}+C$$
Réponse
$$$\int \frac{\sqrt{1 - \frac{1}{x}}}{x^{2}}\, dx = \frac{2 \left(\frac{x - 1}{x}\right)^{\frac{3}{2}}}{3} + C$$$A