Intégrale de $$$\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}\, dx$$$.
Solution
Réécrivez $$$\cos\left(2 x \right)\cos\left(6 x \right)$$$ à l'aide de la formule $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=6 x$$$:
$${\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}}$$
Développez l'expression:
$${\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} + \frac{\cos{\left(8 x \right)}}{2}\right) \sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}}{2}\right)d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}$$$ :
$${\color{red}{\int{\left(\frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)}}{2} + \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}\right)d x}}{2}\right)}}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} + \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} d x} + \int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}\right)}}}{2}$$
Réécrivez $$$\sin\left(2 x \right)\cos\left(4 x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=4 x$$$:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(4 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2}$$
Développez l'expression:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)}}{2} + \frac{\sin{\left(6 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)}}{2} + \frac{\sin^{2}{\left(6 x \right)}}{2}\right)d x}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = - \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}$$$ :
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(2 x \right)} \sin{\left(6 x \right)}}{2} + \frac{\sin^{2}{\left(6 x \right)}}{2}\right)d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}\right)d x}}{2}\right)}}}{2}$$
Intégrez terme à terme:
$$\frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \sin{\left(6 x \right)} + \sin^{2}{\left(6 x \right)}\right)d x}}}}{4} = \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x} + \int{\sin^{2}{\left(6 x \right)} d x}\right)}}}{4}$$
Soit $$$u=6 x$$$.
Alors $$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{6}$$$.
L’intégrale devient
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(6 x \right)} d x}}}}{4} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{6} d u}}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{6}$$$ et $$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$ :
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin^{2}{\left(u \right)}}{6} d u}}}}{4} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin^{2}{\left(u \right)} d u}}{6}\right)}}}{4}$$
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha= u $$$:
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin^{2}{\left(u \right)} d u}}}}{24} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{24}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$ :
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}}{24} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}}{24}$$
Intégrez terme à terme:
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} + \frac{{\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}}{48}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{48} + \frac{{\color{red}{\int{1 d u}}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(2 u \right)} d u}}{48} + \frac{{\color{red}{u}}}{48}$$
Soit $$$v=2 u$$$.
Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{48} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{48}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :
$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{48} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{48}$$
L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :
$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{96} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(v \right)}}}}{96}$$
Rappelons que $$$v=2 u$$$ :
$$\frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{v}} \right)}}{96} = \frac{u}{48} - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{96}$$
Rappelons que $$$u=6 x$$$ :
$$- \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{u}} \right)}}{96} + \frac{{\color{red}{u}}}{48} = - \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}{4} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left(2 {\color{red}{\left(6 x\right)}} \right)}}{96} + \frac{{\color{red}{\left(6 x\right)}}}{48}$$
Réécrivez l'intégrande en utilisant la formule $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=6 x$$$:
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(8 x \right)}$$$ :
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(8 x \right)}}{2}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(8 x \right)}\right)d x}}{2}\right)}}}{4}$$
Intégrez terme à terme:
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(8 x \right)}\right)d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(8 x \right)} d x}\right)}}}{8}$$
Soit $$$u=8 x$$$.
Alors $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{8}$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{8} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{8}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\sin{\left(u \right)}}}}{64}$$
Rappelons que $$$u=8 x$$$ :
$$\frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{u}} \right)}}{64} = \frac{x}{8} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{64}$$
Soit $$$u=4 x$$$.
Alors $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{4}$$$.
Donc,
$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{4}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Rappelons que $$$u=4 x$$$ :
$$\frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{x}{8} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}$$
Réécrivez $$$\sin\left(2 x \right)\cos\left(8 x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=8 x$$$:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(8 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(6 x \right)}}{2} + \frac{\sin{\left(10 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2}$$
Développez l'expression:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin{\left(6 x \right)}}{2} + \frac{\sin{\left(10 x \right)}}{2}\right) \sin{\left(6 x \right)} d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(6 x \right)}}{2} + \frac{\sin{\left(6 x \right)} \sin{\left(10 x \right)}}{2}\right)d x}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = - \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}$$$ :
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \frac{\sin^{2}{\left(6 x \right)}}{2} + \frac{\sin{\left(6 x \right)} \sin{\left(10 x \right)}}{2}\right)d x}}}}{2} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\left(\frac{\int{\left(- \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}\right)d x}}{2}\right)}}}{2}$$
Intégrez terme à terme:
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\int{\left(- \sin^{2}{\left(6 x \right)} + \sin{\left(6 x \right)} \sin{\left(10 x \right)}\right)d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{{\color{red}{\left(\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x} - \int{\sin^{2}{\left(6 x \right)} d x}\right)}}}{4}$$
L'intégrale $$$\int{\sin^{2}{\left(6 x \right)} d x}$$$ a déjà été calculée :
$$\int{\sin^{2}{\left(6 x \right)} d x} = \frac{x}{2} - \frac{\sin{\left(12 x \right)}}{24}$$
Par conséquent,
$$\frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}{4} - \frac{{\color{red}{\int{\sin^{2}{\left(6 x \right)} d x}}}}{4} = \frac{x}{8} - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(12 x \right)}}{96} + \frac{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}{4} - \frac{{\color{red}{\left(\frac{x}{2} - \frac{\sin{\left(12 x \right)}}{24}\right)}}}{4}$$
Réécrivez l'intégrande en utilisant la formule $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=6 x$$$ et $$$\beta=10 x$$$:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\sin{\left(6 x \right)} \sin{\left(10 x \right)} d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(16 x \right)}}{2}\right)d x}}}}{4}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \cos{\left(4 x \right)} - \cos{\left(16 x \right)}$$$ :
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\frac{\cos{\left(4 x \right)}}{2} - \frac{\cos{\left(16 x \right)}}{2}\right)d x}}}}{4} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(4 x \right)} - \cos{\left(16 x \right)}\right)d x}}{2}\right)}}}{4}$$
Intégrez terme à terme:
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\int{\left(\cos{\left(4 x \right)} - \cos{\left(16 x \right)}\right)d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{{\color{red}{\left(\int{\cos{\left(4 x \right)} d x} - \int{\cos{\left(16 x \right)} d x}\right)}}}{8}$$
Soit $$$v=16 x$$$.
Alors $$$dv=\left(16 x\right)^{\prime }dx = 16 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{dv}{16}$$$.
Ainsi,
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(16 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{16} d v}}}}{8}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{16}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{16} d v}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{16}\right)}}}{8}$$
L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{128} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\sin{\left(v \right)}}}}{128}$$
Rappelons que $$$v=16 x$$$ :
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{v}} \right)}}{128} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{\left(16 x\right)}} \right)}}{128}$$
L'intégrale $$$\int{\cos{\left(4 x \right)} d x}$$$ a déjà été calculée :
$$\int{\cos{\left(4 x \right)} d x} = \frac{\sin{\left(4 x \right)}}{4}$$
Par conséquent,
$$- \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = - \frac{\sin{\left(4 x \right)}}{32} + \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128} + \frac{{\color{red}{\left(\frac{\sin{\left(4 x \right)}}{4}\right)}}}{8}$$
Par conséquent,
$$\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x} = \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}$$
Ajouter la constante d'intégration :
$$\int{\sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)} d x} = \frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}+C$$
Réponse
$$$\int \sin{\left(2 x \right)} \sin{\left(6 x \right)} \cos{\left(2 x \right)} \cos{\left(6 x \right)}\, dx = \left(\frac{\sin{\left(8 x \right)}}{64} - \frac{\sin{\left(16 x \right)}}{128}\right) + C$$$A