Intégrale de $$$8 a^{8} w^{8}$$$ par rapport à $$$a$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 8 a^{8} w^{8}\, da$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ avec $$$c=8 w^{8}$$$ et $$$f{\left(a \right)} = a^{8}$$$ :
$${\color{red}{\int{8 a^{8} w^{8} d a}}} = {\color{red}{\left(8 w^{8} \int{a^{8} d a}\right)}}$$
Appliquer la règle de puissance $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=8$$$ :
$$8 w^{8} {\color{red}{\int{a^{8} d a}}}=8 w^{8} {\color{red}{\frac{a^{1 + 8}}{1 + 8}}}=8 w^{8} {\color{red}{\left(\frac{a^{9}}{9}\right)}}$$
Par conséquent,
$$\int{8 a^{8} w^{8} d a} = \frac{8 a^{9} w^{8}}{9}$$
Ajouter la constante d'intégration :
$$\int{8 a^{8} w^{8} d a} = \frac{8 a^{9} w^{8}}{9}+C$$
Réponse
$$$\int 8 a^{8} w^{8}\, da = \frac{8 a^{9} w^{8}}{9} + C$$$A