Intégrale de $$$\frac{1}{- x^{2} + x}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{- x^{2} + x}\, dx$$$.
Solution
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$${\color{red}{\int{\frac{1}{- x^{2} + x} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{x}\right)d x}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(- \frac{1}{x - 1} + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} - \int{\frac{1}{x - 1} d x}\right)}}$$
L’intégrale de $$$\frac{1}{x}$$$ est $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$ :
$$- \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{\frac{1}{x - 1} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Ainsi,
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x - 1} d x}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Rappelons que $$$u=x - 1$$$ :
$$\ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$
Par conséquent,
$$\int{\frac{1}{- x^{2} + x} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{- x^{2} + x} d x} = \ln{\left(\left|{x}\right| \right)} - \ln{\left(\left|{x - 1}\right| \right)}+C$$
Réponse
$$$\int \frac{1}{- x^{2} + x}\, dx = \left(\ln\left(\left|{x}\right|\right) - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A