Intégrale de $$$\cos{\left(\ln\left(11 x\right) \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx$$$.
Solution
Soit $$$u=11 x$$$.
Alors $$$du=\left(11 x\right)^{\prime }dx = 11 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{11}$$$.
L’intégrale devient
$${\color{red}{\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{11}$$$ et $$$f{\left(u \right)} = \cos{\left(\ln{\left(u \right)} \right)}$$$ :
$${\color{red}{\int{\frac{\cos{\left(\ln{\left(u \right)} \right)}}{11} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}\right)}}$$
Pour l’intégrale $$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Soient $$$\operatorname{g}=\cos{\left(\ln{\left(u \right)} \right)}$$$ et $$$\operatorname{dv}=du$$$.
Donc $$$\operatorname{dg}=\left(\cos{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d u}=u$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{{\color{red}{\left(\cos{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \left(- \frac{\sin{\left(\ln{\left(u \right)} \right)}}{u}\right) d u}\right)}}}{11}=\frac{{\color{red}{\left(u \cos{\left(\ln{\left(u \right)} \right)} - \int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}\right)}}}{11}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = \sin{\left(\ln{\left(u \right)} \right)}$$$ :
$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\int{\left(- \sin{\left(\ln{\left(u \right)} \right)}\right)d u}}}}{11} = \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{{\color{red}{\left(- \int{\sin{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$
Pour l’intégrale $$$\int{\sin{\left(\ln{\left(u \right)} \right)} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Soient $$$\operatorname{g}=\sin{\left(\ln{\left(u \right)} \right)}$$$ et $$$\operatorname{dv}=du$$$.
Donc $$$\operatorname{dg}=\left(\sin{\left(\ln{\left(u \right)} \right)}\right)^{\prime }du=\frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} du$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d u}=u$$$ (les étapes peuvent être consultées »).
Par conséquent,
$$\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\int{\sin{\left(\ln{\left(u \right)} \right)} d u}}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(\sin{\left(\ln{\left(u \right)} \right)} \cdot u-\int{u \cdot \frac{\cos{\left(\ln{\left(u \right)} \right)}}{u} d u}\right)}}}{11}=\frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} + \frac{{\color{red}{\left(u \sin{\left(\ln{\left(u \right)} \right)} - \int{\cos{\left(\ln{\left(u \right)} \right)} d u}\right)}}}{11}$$
Nous obtenons une intégrale que nous avons déjà vue.
Ainsi, nous avons obtenu l’équation simple suivante concernant l’intégrale :
$$\frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11} = \frac{u \sin{\left(\ln{\left(u \right)} \right)}}{11} + \frac{u \cos{\left(\ln{\left(u \right)} \right)}}{11} - \frac{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}{11}$$
En résolvant, on obtient que
$$\int{\cos{\left(\ln{\left(u \right)} \right)} d u} = \frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}$$
Ainsi,
$$\frac{{\color{red}{\int{\cos{\left(\ln{\left(u \right)} \right)} d u}}}}{11} = \frac{{\color{red}{\left(\frac{u \left(\sin{\left(\ln{\left(u \right)} \right)} + \cos{\left(\ln{\left(u \right)} \right)}\right)}{2}\right)}}}{11}$$
Rappelons que $$$u=11 x$$$ :
$$\frac{{\color{red}{u}} \left(\sin{\left(\ln{\left({\color{red}{u}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{u}} \right)} \right)}\right)}{22} = \frac{{\color{red}{\left(11 x\right)}} \left(\sin{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)} + \cos{\left(\ln{\left({\color{red}{\left(11 x\right)}} \right)} \right)}\right)}{22}$$
Par conséquent,
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{x \left(\sin{\left(\ln{\left(11 x \right)} \right)} + \cos{\left(\ln{\left(11 x \right)} \right)}\right)}{2}$$
Simplifier:
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\cos{\left(\ln{\left(11 x \right)} \right)} d x} = \frac{\sqrt{2} x \sin{\left(\ln{\left(x \right)} + \frac{\pi}{4} + \ln{\left(11 \right)} \right)}}{2}+C$$
Réponse
$$$\int \cos{\left(\ln\left(11 x\right) \right)}\, dx = \frac{\sqrt{2} x \sin{\left(\ln\left(x\right) + \frac{\pi}{4} + \ln\left(11\right) \right)}}{2} + C$$$A