Intégrale de $$$2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx$$$.
Solution
Réécrivez $$$\sin\left(2 x \right)\sin\left(3 x \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\sin\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)-\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ avec $$$\alpha=2 x$$$ et $$$\beta=3 x$$$:
$${\color{red}{\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = 2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}$$$ :
$${\color{red}{\int{\left(\cos{\left(x \right)} - \cos{\left(5 x \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} - 2 \cos{\left(5 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{2 \cos{\left(x \right)} d x} - \int{2 \cos{\left(5 x \right)} d x}\right)}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$ :
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{2 \cos{\left(5 x \right)} d x}}}}{2} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\left(2 \int{\cos{\left(5 x \right)} d x}\right)}}}{2}$$
Soit $$$u=5 x$$$.
Alors $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{5}$$$.
L’intégrale devient
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\cos{\left(5 x \right)} d x}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{5}$$
Rappelons que $$$u=5 x$$$ :
$$\frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{5} = \frac{\int{2 \cos{\left(x \right)} d x}}{2} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ :
$$- \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\int{2 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin{\left(5 x \right)}}{5} + \frac{{\color{red}{\left(2 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$ :
$$- \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\int{\cos{\left(x \right)} d x}}} = - \frac{\sin{\left(5 x \right)}}{5} + {\color{red}{\sin{\left(x \right)}}}$$
Par conséquent,
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}$$
Ajouter la constante d'intégration :
$$\int{2 \sin{\left(2 x \right)} \sin{\left(3 x \right)} d x} = \sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}+C$$
Réponse
$$$\int 2 \sin{\left(2 x \right)} \sin{\left(3 x \right)}\, dx = \left(\sin{\left(x \right)} - \frac{\sin{\left(5 x \right)}}{5}\right) + C$$$A