Intégrale de $$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}$$$ par rapport à $$$t$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2}$$$ et $$$f{\left(t \right)} = t^{\frac{5}{2}}$$$ :
$${\color{red}{\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t}}} = {\color{red}{\left(1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} \int{t^{\frac{5}{2}} d t}\right)}}$$
Appliquer la règle de puissance $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{5}{2}$$$ :
$$1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\int{t^{\frac{5}{2}} d t}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=1316141568000 \sqrt{7} \pi a^{4} b c^{2} e^{2} {\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$
Par conséquent,
$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}$$
Ajouter la constante d'intégration :
$$\int{1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2} d t} = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2}+C$$
Réponse
$$$\int 1316141568000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{5}{2}} e^{2}\, dt = 376040448000 \sqrt{7} \pi a^{4} b c^{2} t^{\frac{7}{2}} e^{2} + C$$$A