Intégrale de $$$\frac{1}{\sqrt{x^{2} + x + 1}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx$$$.
Solution
Compléter le carré (voir les étapes ») : $$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}}$$
Soit $$$u=x + \frac{1}{2}$$$.
Alors $$$du=\left(x + \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale devient
$${\color{red}{\int{\frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}}$$
Soit $$$u=\frac{\sqrt{3} \sinh{\left(v \right)}}{2}$$$.
Alors $$$du=\left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sqrt{3} \cosh{\left(v \right)}}{2} dv$$$ (les étapes peuvent être vues »).
De plus, il s'ensuit que $$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$.
L’intégrande devient
$$$\frac{1}{\sqrt{ u ^{2} + \frac{3}{4}}} = \frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}$$$
Utilisez l'identité $$$\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}$$$ :
$$$\frac{1}{\sqrt{\frac{3 \sinh^{2}{\left( v \right)}}{4} + \frac{3}{4}}}=\frac{2 \sqrt{3}}{3 \sqrt{\sinh^{2}{\left( v \right)} + 1}}=\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}}$$$
$$$\frac{2 \sqrt{3}}{3 \sqrt{\cosh^{2}{\left( v \right)}}} = \frac{2 \sqrt{3}}{3 \cosh{\left( v \right)}}$$$
Donc,
$${\color{red}{\int{\frac{1}{\sqrt{u^{2} + \frac{3}{4}}} d u}}} = {\color{red}{\int{1 d v}}}$$
Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:
$${\color{red}{\int{1 d v}}} = {\color{red}{v}}$$
Rappelons que $$$v=\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}$$$ :
$${\color{red}{v}} = {\color{red}{\operatorname{asinh}{\left(\frac{2 \sqrt{3} u}{3} \right)}}}$$
Rappelons que $$$u=x + \frac{1}{2}$$$ :
$$\operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{u}}}{3} \right)} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} {\color{red}{\left(x + \frac{1}{2}\right)}}}{3} \right)}$$
Par conséquent,
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}$$
Simplifier:
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\sqrt{x^{2} + x + 1}} d x} = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}+C$$
Réponse
$$$\int \frac{1}{\sqrt{x^{2} + x + 1}}\, dx = \operatorname{asinh}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)} + C$$$A