Intégrale de $$$\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx$$$.
Solution
Multipliez le numérateur et le dénominateur par $$$\sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}}$$
Soit $$$u=\tan{\left(x \right)}$$$.
Alors $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sec^{2}{\left(x \right)} dx = du$$$.
Par conséquent,
$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{a^{2} + b^{2} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}}$$
Soit $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$.
Alors $$$dv=\left(\frac{u \left|{b}\right|}{\left|{a}\right|}\right)^{\prime }du = \frac{\left|{b}\right|}{\left|{a}\right|} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{\left|{a}\right| dv}{\left|{b}\right|}$$$.
L’intégrale devient
$${\color{red}{\int{\frac{1}{a^{2} + b^{2} u^{2}} d u}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{\left|{a}\right|}{a^{2} \left|{b}\right|}$$$ et $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$ :
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(v^{2} + 1\right) \left|{b}\right|} d v}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{v^{2} + 1} d v}}{a^{2} \left|{b}\right|}}}$$
L’intégrale de $$$\frac{1}{v^{2} + 1}$$$ est $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$ :
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(v \right)}}}}{a^{2} \left|{b}\right|}$$
Rappelons que $$$v=\frac{u \left|{b}\right|}{\left|{a}\right|}$$$ :
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{v}} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{u \left|{b}\right|}{\left|{a}\right|}}} \right)}}{a^{2} \left|{b}\right|}$$
Rappelons que $$$u=\tan{\left(x \right)}$$$ :
$$\frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{u}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\left|{b}\right| {\color{red}{\tan{\left(x \right)}}}}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
Par conséquent,
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{\tan{\left(x \right)} \left|{b}\right|}{\left|{a}\right|} \right)}}{a^{2} \left|{b}\right|}$$
Simplifier:
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}} d x} = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}}+C$$
Réponse
$$$\int \frac{1}{a^{2} \cos^{2}{\left(x \right)} + b^{2} \sin^{2}{\left(x \right)}}\, dx = \frac{\left|{\frac{a}{b}}\right| \operatorname{atan}{\left(\tan{\left(x \right)} \left|{\frac{b}{a}}\right| \right)}}{a^{2}} + C$$$A