Intégrale de $$$- 4 \ln^{2}\left(x\right) + 2 \ln\left(x\right)$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- 4 \ln^{2}\left(x\right) + 2 \ln\left(x\right)\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- 4 \ln{\left(x \right)}^{2} + 2 \ln{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{2 \ln{\left(x \right)} d x} - \int{4 \ln{\left(x \right)}^{2} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \ln{\left(x \right)}^{2}$$$ :
$$\int{2 \ln{\left(x \right)} d x} - {\color{red}{\int{4 \ln{\left(x \right)}^{2} d x}}} = \int{2 \ln{\left(x \right)} d x} - {\color{red}{\left(4 \int{\ln{\left(x \right)}^{2} d x}\right)}}$$
Pour l’intégrale $$$\int{\ln{\left(x \right)}^{2} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$ et $$$\operatorname{dv}=dx$$$.
Donc $$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d x}=x$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$\int{2 \ln{\left(x \right)} d x} - 4 {\color{red}{\int{\ln{\left(x \right)}^{2} d x}}}=\int{2 \ln{\left(x \right)} d x} - 4 {\color{red}{\left(\ln{\left(x \right)}^{2} \cdot x-\int{x \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}=\int{2 \ln{\left(x \right)} d x} - 4 {\color{red}{\left(x \ln{\left(x \right)}^{2} - \int{2 \ln{\left(x \right)} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = \ln{\left(x \right)}$$$ :
$$- 4 x \ln{\left(x \right)}^{2} + 5 {\color{red}{\int{2 \ln{\left(x \right)} d x}}} = - 4 x \ln{\left(x \right)}^{2} + 5 {\color{red}{\left(2 \int{\ln{\left(x \right)} d x}\right)}}$$
Pour l’intégrale $$$\int{\ln{\left(x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\ln{\left(x \right)}$$$ et $$$\operatorname{dv}=dx$$$.
Donc $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d x}=x$$$ (les étapes peuvent être consultées »).
Par conséquent,
$$- 4 x \ln{\left(x \right)}^{2} + 10 {\color{red}{\int{\ln{\left(x \right)} d x}}}=- 4 x \ln{\left(x \right)}^{2} + 10 {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=- 4 x \ln{\left(x \right)}^{2} + 10 {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=1$$$:
$$- 4 x \ln{\left(x \right)}^{2} + 10 x \ln{\left(x \right)} - 10 {\color{red}{\int{1 d x}}} = - 4 x \ln{\left(x \right)}^{2} + 10 x \ln{\left(x \right)} - 10 {\color{red}{x}}$$
Par conséquent,
$$\int{\left(- 4 \ln{\left(x \right)}^{2} + 2 \ln{\left(x \right)}\right)d x} = - 4 x \ln{\left(x \right)}^{2} + 10 x \ln{\left(x \right)} - 10 x$$
Simplifier:
$$\int{\left(- 4 \ln{\left(x \right)}^{2} + 2 \ln{\left(x \right)}\right)d x} = 2 x \left(- 2 \ln{\left(x \right)}^{2} + 5 \ln{\left(x \right)} - 5\right)$$
Ajouter la constante d'intégration :
$$\int{\left(- 4 \ln{\left(x \right)}^{2} + 2 \ln{\left(x \right)}\right)d x} = 2 x \left(- 2 \ln{\left(x \right)}^{2} + 5 \ln{\left(x \right)} - 5\right)+C$$
Réponse
$$$\int \left(- 4 \ln^{2}\left(x\right) + 2 \ln\left(x\right)\right)\, dx = 2 x \left(- 2 \ln^{2}\left(x\right) + 5 \ln\left(x\right) - 5\right) + C$$$A