Intégrale de $$$y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx$$$.
Solution
Simplifier l’intégrande:
$${\color{red}{\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x}}} = {\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2 y^{\frac{9}{2}}$$$ et $$$f{\left(x \right)} = x \left(2 x^{2} - y\right)$$$ :
$${\color{red}{\int{2 x y^{\frac{9}{2}} \left(2 x^{2} - y\right) d x}}} = {\color{red}{\left(2 y^{\frac{9}{2}} \int{x \left(2 x^{2} - y\right) d x}\right)}}$$
Soit $$$u=2 x^{2} - y$$$.
Alors $$$du=\left(2 x^{2} - y\right)^{\prime }dx = 4 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{4}$$$.
Ainsi,
$$2 y^{\frac{9}{2}} {\color{red}{\int{x \left(2 x^{2} - y\right) d x}}} = 2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{4}$$$ et $$$f{\left(u \right)} = u$$$ :
$$2 y^{\frac{9}{2}} {\color{red}{\int{\frac{u}{4} d u}}} = 2 y^{\frac{9}{2}} {\color{red}{\left(\frac{\int{u d u}}{4}\right)}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{y^{\frac{9}{2}} {\color{red}{\int{u d u}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=\frac{y^{\frac{9}{2}} {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$
Rappelons que $$$u=2 x^{2} - y$$$ :
$$\frac{y^{\frac{9}{2}} {\color{red}{u}}^{2}}{4} = \frac{y^{\frac{9}{2}} {\color{red}{\left(2 x^{2} - y\right)}}^{2}}{4}$$
Par conséquent,
$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(2 x^{2} - y\right)^{2}}{4}$$
Simplifier:
$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}$$
Ajouter la constante d'intégration :
$$\int{y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right) d x} = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4}+C$$
Réponse
$$$\int y^{\frac{7}{2}} \left(4 x^{3} y - 2 x y^{2}\right)\, dx = \frac{y^{\frac{9}{2}} \left(- 2 x^{2} + y\right)^{2}}{4} + C$$$A