Intégrale de $$$x^{3} e^{x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int x^{3} e^{x^{2}}\, dx$$$.
Solution
Soit $$$u=x^{2}$$$.
Alors $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$x dx = \frac{du}{2}$$$.
Par conséquent,
$${\color{red}{\int{x^{3} e^{x^{2}} d x}}} = {\color{red}{\int{\frac{u e^{u}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = u e^{u}$$$ :
$${\color{red}{\int{\frac{u e^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{u} d u}}{2}\right)}}$$
Pour l’intégrale $$$\int{u e^{u} d u}$$$, utilisez l’intégration par parties $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Soient $$$\operatorname{m}=u$$$ et $$$\operatorname{dv}=e^{u} du$$$.
Donc $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (les étapes peuvent être consultées »).
Par conséquent,
$$\frac{{\color{red}{\int{u e^{u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{2}$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{u} d u} = e^{u}$$$ :
$$\frac{u e^{u}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{2} = \frac{u e^{u}}{2} - \frac{{\color{red}{e^{u}}}}{2}$$
Rappelons que $$$u=x^{2}$$$ :
$$- \frac{e^{{\color{red}{u}}}}{2} + \frac{{\color{red}{u}} e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{x^{2}}}}}{2} + \frac{{\color{red}{x^{2}}} e^{{\color{red}{x^{2}}}}}{2}$$
Par conséquent,
$$\int{x^{3} e^{x^{2}} d x} = \frac{x^{2} e^{x^{2}}}{2} - \frac{e^{x^{2}}}{2}$$
Simplifier:
$$\int{x^{3} e^{x^{2}} d x} = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2}$$
Ajouter la constante d'intégration :
$$\int{x^{3} e^{x^{2}} d x} = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2}+C$$
Réponse
$$$\int x^{3} e^{x^{2}}\, dx = \frac{\left(x^{2} - 1\right) e^{x^{2}}}{2} + C$$$A