Intégrale de $$$x^{2} - 2 y$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(x^{2} - 2 y\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(x^{2} - 2 y\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{2 y d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$- \int{2 y d x} + {\color{red}{\int{x^{2} d x}}}=- \int{2 y d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{2 y d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=2 y$$$:
$$\frac{x^{3}}{3} - {\color{red}{\int{2 y d x}}} = \frac{x^{3}}{3} - {\color{red}{\left(2 x y\right)}}$$
Par conséquent,
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x^{3}}{3} - 2 x y$$
Simplifier:
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x \left(x^{2} - 6 y\right)}{3}$$
Ajouter la constante d'intégration :
$$\int{\left(x^{2} - 2 y\right)d x} = \frac{x \left(x^{2} - 6 y\right)}{3}+C$$
Réponse
$$$\int \left(x^{2} - 2 y\right)\, dx = \frac{x \left(x^{2} - 6 y\right)}{3} + C$$$A