Intégrale de $$$\sqrt{2} x^{3} \left(x^{2} - 4\right)$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sqrt{2} x^{3} \left(x^{2} - 4\right)\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\sqrt{2}$$$ et $$$f{\left(x \right)} = x^{3} \left(x^{2} - 4\right)$$$ :
$${\color{red}{\int{\sqrt{2} x^{3} \left(x^{2} - 4\right) d x}}} = {\color{red}{\sqrt{2} \int{x^{3} \left(x^{2} - 4\right) d x}}}$$
Expand the expression:
$$\sqrt{2} {\color{red}{\int{x^{3} \left(x^{2} - 4\right) d x}}} = \sqrt{2} {\color{red}{\int{\left(x^{5} - 4 x^{3}\right)d x}}}$$
Intégrez terme à terme:
$$\sqrt{2} {\color{red}{\int{\left(x^{5} - 4 x^{3}\right)d x}}} = \sqrt{2} {\color{red}{\left(- \int{4 x^{3} d x} + \int{x^{5} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=5$$$ :
$$\sqrt{2} \left(- \int{4 x^{3} d x} + {\color{red}{\int{x^{5} d x}}}\right)=\sqrt{2} \left(- \int{4 x^{3} d x} + {\color{red}{\frac{x^{1 + 5}}{1 + 5}}}\right)=\sqrt{2} \left(- \int{4 x^{3} d x} + {\color{red}{\left(\frac{x^{6}}{6}\right)}}\right)$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = x^{3}$$$ :
$$\sqrt{2} \left(\frac{x^{6}}{6} - {\color{red}{\int{4 x^{3} d x}}}\right) = \sqrt{2} \left(\frac{x^{6}}{6} - {\color{red}{\left(4 \int{x^{3} d x}\right)}}\right)$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=3$$$ :
$$\sqrt{2} \left(\frac{x^{6}}{6} - 4 {\color{red}{\int{x^{3} d x}}}\right)=\sqrt{2} \left(\frac{x^{6}}{6} - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}\right)=\sqrt{2} \left(\frac{x^{6}}{6} - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}\right)$$
Par conséquent,
$$\int{\sqrt{2} x^{3} \left(x^{2} - 4\right) d x} = \sqrt{2} \left(\frac{x^{6}}{6} - x^{4}\right)$$
Simplifier:
$$\int{\sqrt{2} x^{3} \left(x^{2} - 4\right) d x} = \frac{\sqrt{2} x^{4} \left(x^{2} - 6\right)}{6}$$
Ajouter la constante d'intégration :
$$\int{\sqrt{2} x^{3} \left(x^{2} - 4\right) d x} = \frac{\sqrt{2} x^{4} \left(x^{2} - 6\right)}{6}+C$$
Réponse
$$$\int \sqrt{2} x^{3} \left(x^{2} - 4\right)\, dx = \frac{\sqrt{2} x^{4} \left(x^{2} - 6\right)}{6} + C$$$A