Intégrale de $$$2 x^{\frac{3}{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 2 x^{\frac{3}{2}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=2$$$ et $$$f{\left(x \right)} = x^{\frac{3}{2}}$$$ :
$${\color{red}{\int{2 x^{\frac{3}{2}} d x}}} = {\color{red}{\left(2 \int{x^{\frac{3}{2}} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{3}{2}$$$ :
$$2 {\color{red}{\int{x^{\frac{3}{2}} d x}}}=2 {\color{red}{\frac{x^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}=2 {\color{red}{\left(\frac{2 x^{\frac{5}{2}}}{5}\right)}}$$
Par conséquent,
$$\int{2 x^{\frac{3}{2}} d x} = \frac{4 x^{\frac{5}{2}}}{5}$$
Ajouter la constante d'intégration :
$$\int{2 x^{\frac{3}{2}} d x} = \frac{4 x^{\frac{5}{2}}}{5}+C$$
Réponse
$$$\int 2 x^{\frac{3}{2}}\, dx = \frac{4 x^{\frac{5}{2}}}{5} + C$$$A