Intégrale de $$$\frac{x \cos{\left(x \right)}}{2}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{x \cos{\left(x \right)}}{2}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = x \cos{\left(x \right)}$$$ :
$${\color{red}{\int{\frac{x \cos{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{x \cos{\left(x \right)} d x}}{2}\right)}}$$
Pour l’intégrale $$$\int{x \cos{\left(x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=x$$$ et $$$\operatorname{dv}=\cos{\left(x \right)} dx$$$.
Donc $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (les étapes peuvent être consultées »).
Par conséquent,
$$\frac{{\color{red}{\int{x \cos{\left(x \right)} d x}}}}{2}=\frac{{\color{red}{\left(x \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 1 d x}\right)}}}{2}=\frac{{\color{red}{\left(x \sin{\left(x \right)} - \int{\sin{\left(x \right)} d x}\right)}}}{2}$$
L’intégrale du sinus est $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$ :
$$\frac{x \sin{\left(x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{2} = \frac{x \sin{\left(x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{2}$$
Par conséquent,
$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)}}{2} + \frac{\cos{\left(x \right)}}{2}$$
Simplifier:
$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{x \cos{\left(x \right)}}{2} d x} = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2}+C$$
Réponse
$$$\int \frac{x \cos{\left(x \right)}}{2}\, dx = \frac{x \sin{\left(x \right)} + \cos{\left(x \right)}}{2} + C$$$A