Intégrale de $$$\tan^{2}{\left(2 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \tan^{2}{\left(2 x \right)}\, dx$$$.
Solution
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
Ainsi,
$${\color{red}{\int{\tan^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$ :
$${\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{2}\right)}}$$
Soit $$$v=\tan{\left(u \right)}$$$.
Alors $$$u=\operatorname{atan}{\left(v \right)}$$$ et $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$\frac{{\color{red}{\int{\tan^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2}$$
Réécrire et décomposer la fraction:
$$\frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$
Appliquez la règle de la constante $$$\int c\, dv = c v$$$ avec $$$c=1$$$:
$$- \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{\int{1 d v}}}}{2} = - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{v}}}{2}$$
L’intégrale de $$$\frac{1}{v^{2} + 1}$$$ est $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$ :
$$\frac{v}{2} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = \frac{v}{2} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$
Rappelons que $$$v=\tan{\left(u \right)}$$$ :
$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} + \frac{{\color{red}{v}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(u \right)}}}}{2}$$
Rappelons que $$$u=2 x$$$ :
$$\frac{\tan{\left({\color{red}{u}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)}}{2} = \frac{\tan{\left({\color{red}{\left(2 x\right)}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$
Par conséquent,
$$\int{\tan^{2}{\left(2 x \right)} d x} = \frac{\tan{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(2 x \right)} \right)}}{2}$$
Simplifier:
$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}+C$$
Réponse
$$$\int \tan^{2}{\left(2 x \right)}\, dx = \left(- x + \frac{\tan{\left(2 x \right)}}{2}\right) + C$$$A