Intégrale de $$$\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx$$$.
Solution
L’entrée est réécrite : $$$\int{\frac{\sqrt{\frac{x - 1}{x}}}{x^{2}} d x}=\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}$$$.
Soit $$$u=\sqrt{x}$$$.
Alors $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
L’intégrale peut être réécrite sous la forme
$${\color{red}{\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x}}} = {\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \frac{\sqrt{u^{2} - 1}}{u^{4}}$$$ :
$${\color{red}{\int{\frac{2 \sqrt{u^{2} - 1}}{u^{4}} d u}}} = {\color{red}{\left(2 \int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}\right)}}$$
Soit $$$u=\cosh{\left(v \right)}$$$.
Alors $$$du=\left(\cosh{\left(v \right)}\right)^{\prime }dv = \sinh{\left(v \right)} dv$$$ (les étapes peuvent être vues »).
De plus, il s'ensuit que $$$v=\operatorname{acosh}{\left(u \right)}$$$.
Donc,
$$$\frac{\sqrt{ u ^{2} - 1}}{ u ^{4}} = \frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}$$$
Utilisez l'identité $$$\cosh^{2}{\left( v \right)} - 1 = \sinh^{2}{\left( v \right)}$$$ :
$$$\frac{\sqrt{\cosh^{2}{\left( v \right)} - 1}}{\cosh^{4}{\left( v \right)}}=\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}}$$$
En supposant que $$$\sinh{\left( v \right)} \ge 0$$$, nous obtenons ce qui suit :
$$$\frac{\sqrt{\sinh^{2}{\left( v \right)}}}{\cosh^{4}{\left( v \right)}} = \frac{\sinh{\left( v \right)}}{\cosh^{4}{\left( v \right)}}$$$
L’intégrale peut se réécrire sous la forme
$$2 {\color{red}{\int{\frac{\sqrt{u^{2} - 1}}{u^{4}} d u}}} = 2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}}$$
Multipliez le numérateur et le dénominateur par $$$\cosh^{2}{\left( v \right)}$$$ et convertissez $$$\frac{\sinh^{2}{\left( v \right)}}{\cosh^{2}{\left( v \right)}}$$$ en $$$\tanh^{2}{\left( v \right)}$$$:
$$2 {\color{red}{\int{\frac{\sinh^{2}{\left(v \right)}}{\cosh^{4}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}}$$
Soit $$$w=\tanh{\left(v \right)}$$$.
Alors $$$dw=\left(\tanh{\left(v \right)}\right)^{\prime }dv = \operatorname{sech}^{2}{\left(v \right)} dv$$$ (les étapes peuvent être vues »), et nous obtenons $$$\operatorname{sech}^{2}{\left(v \right)} dv = dw$$$.
Donc,
$$2 {\color{red}{\int{\frac{\tanh^{2}{\left(v \right)}}{\cosh^{2}{\left(v \right)}} d v}}} = 2 {\color{red}{\int{w^{2} d w}}}$$
Appliquer la règle de puissance $$$\int w^{n}\, dw = \frac{w^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :
$$2 {\color{red}{\int{w^{2} d w}}}=2 {\color{red}{\frac{w^{1 + 2}}{1 + 2}}}=2 {\color{red}{\left(\frac{w^{3}}{3}\right)}}$$
Rappelons que $$$w=\tanh{\left(v \right)}$$$ :
$$\frac{2 {\color{red}{w}}^{3}}{3} = \frac{2 {\color{red}{\tanh{\left(v \right)}}}^{3}}{3}$$
Rappelons que $$$v=\operatorname{acosh}{\left(u \right)}$$$ :
$$\frac{2 \tanh^{3}{\left({\color{red}{v}} \right)}}{3} = \frac{2 \tanh^{3}{\left({\color{red}{\operatorname{acosh}{\left(u \right)}}} \right)}}{3}$$
Rappelons que $$$u=\sqrt{x}$$$ :
$$\frac{2 {\color{red}{u}}^{-3} \left(1 + {\color{red}{u}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{u}}\right)^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\sqrt{x}}}^{-3} \left(1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}} \left(-1 + {\color{red}{\sqrt{x}}}\right)^{\frac{3}{2}}}{3}$$
Par conséquent,
$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sqrt{x - 1}}{x^{\frac{5}{2}}} d x} = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}}+C$$
Réponse
$$$\int \frac{\sqrt{\frac{x - 1}{x}}}{x^{2}}\, dx = \frac{2 \left(\sqrt{x} - 1\right)^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{\frac{3}{2}}}{3 x^{\frac{3}{2}}} + C$$$A