Intégrale de $$$- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}$$$ par rapport à $$$x$$$

La calculatrice trouvera l’intégrale/primitive de $$$- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}$$$ par rapport à $$$x$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)\, dx$$$.

Solution

Réécrivez l'intégrande:

$${\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}}\right)d x}}}$$

Réécrivez le numérateur et scindez la fraction:

$${\color{red}{\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}}\right)d x}}} = {\color{red}{\int{\left(\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} + \frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}\right)d x}}}$$

Intégrez terme à terme:

$${\color{red}{\int{\left(\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} + \frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x} + \int{\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}\right)}}$$

Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$:

$$\int{\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x}}} = \int{\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$

Soit $$$u=\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$.

Alors $$$du=\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)^{\prime }dx = \left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) dx = du$$$.

Ainsi,

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\left(- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{\sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$ et $$$f{\left(u \right)} = \frac{1}{u}$$$ :

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\frac{\sin{\left(a \right)} \int{\frac{1}{u} d u}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$

L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\int{\frac{1}{u} d u}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

Rappelons que $$$u=\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$ :

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

Par conséquent,

$$\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)d x} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

Simplifier:

$$\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}$$

Ajouter la constante d'intégration :

$$\int{\left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}+C$$

Réponse

$$$\int \left(- \frac{\sin{\left(x \right)}}{\sin{\left(a - x \right)}}\right)\, dx = \left(x \cos{\left(a \right)} + \ln\left(\left|{\sin{\left(a - x \right)}}\right|\right) \sin{\left(a \right)}\right) + C$$$A


Please try a new game Rotatly