Intégrale de $$$\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{\sin{\left(\frac{\pi t}{4} \right)}}$$$ et $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ :
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x}}} = {\color{red}{\frac{\int{\sin{\left(x \right)} d x}}{\sin{\left(\frac{\pi t}{4} \right)}}}}$$
L’intégrale du sinus est $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$ :
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{\sin{\left(\frac{\pi t}{4} \right)}} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
Par conséquent,
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} d x} = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}+C$$
Réponse
$$$\int \frac{\sin{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}}\, dx = - \frac{\cos{\left(x \right)}}{\sin{\left(\frac{\pi t}{4} \right)}} + C$$$A