Intégrale de $$$a^{2} b^{2} \sin^{2}{\left(2 x \right)}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx$$$.
Solution
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha=2 x$$$:
$${\color{red}{\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)$$$ :
$${\color{red}{\int{\frac{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} b^{2} \left(1 - \cos{\left(4 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(- a^{2} b^{2} \cos{\left(4 x \right)} + a^{2} b^{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{a^{2} b^{2} d x} - \int{a^{2} b^{2} \cos{\left(4 x \right)} d x}\right)}}}{2}$$
Appliquez la règle de la constante $$$\int c\, dx = c x$$$ avec $$$c=a^{2} b^{2}$$$:
$$- \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{\int{a^{2} b^{2} d x}}}}{2} = - \frac{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}{2} + \frac{{\color{red}{a^{2} b^{2} x}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=a^{2} b^{2}$$$ et $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ :
$$\frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{\int{a^{2} b^{2} \cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{{\color{red}{a^{2} b^{2} \int{\cos{\left(4 x \right)} d x}}}}{2}$$
Soit $$$u=4 x$$$.
Alors $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{4}$$$.
L’intégrale devient
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{4}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} {\color{red}{\sin{\left(u \right)}}}}{8}$$
Rappelons que $$$u=4 x$$$ :
$$\frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{u}} \right)}}{8} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{8}$$
Par conséquent,
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} x}{2} - \frac{a^{2} b^{2} \sin{\left(4 x \right)}}{8}$$
Simplifier:
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}$$
Ajouter la constante d'intégration :
$$\int{a^{2} b^{2} \sin^{2}{\left(2 x \right)} d x} = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8}+C$$
Réponse
$$$\int a^{2} b^{2} \sin^{2}{\left(2 x \right)}\, dx = \frac{a^{2} b^{2} \left(4 x - \sin{\left(4 x \right)}\right)}{8} + C$$$A