Intégrale de $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$$.
Solution
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha=x$$$:
$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}$$$ :
$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2}$$
Intégrez terme à terme:
$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{2}$$
Soit $$$u=\sin{\left(2 x \right)}$$$.
Alors $$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$.
L’intégrale devient
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = u$$$ :
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{u d u}}{2}\right)}}}{2}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{u d u}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$
Rappelons que $$$u=\sin{\left(2 x \right)}$$$ :
$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{u}}^{2}}{8} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(2 x \right)}}}^{2}}{8}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
Donc,
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Rappelons que $$$u=2 x$$$ :
$$- \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Par conséquent,
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4}$$
Simplifier:
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2} - \frac{1}{4}$$
Ajoutez la constante d'intégration (et supprimez la constante de l'expression) :
$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2}+C$$
Réponse
$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx = \frac{\sin^{4}{\left(x \right)}}{2} + C$$$A