Intégrale de $$$- x \sin{\left(x \right)} \tan{\left(1 \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=- \tan{\left(1 \right)}$$$ et $$$f{\left(x \right)} = x \sin{\left(x \right)}$$$ :
$${\color{red}{\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x}}} = {\color{red}{\left(- \tan{\left(1 \right)} \int{x \sin{\left(x \right)} d x}\right)}}$$
Pour l’intégrale $$$\int{x \sin{\left(x \right)} d x}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=x$$$ et $$$\operatorname{dv}=\sin{\left(x \right)} dx$$$.
Donc $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (les étapes peuvent être consultées »).
L’intégrale peut être réécrite sous la forme
$$- \tan{\left(1 \right)} {\color{red}{\int{x \sin{\left(x \right)} d x}}}=- \tan{\left(1 \right)} {\color{red}{\left(x \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 1 d x}\right)}}=- \tan{\left(1 \right)} {\color{red}{\left(- x \cos{\left(x \right)} - \int{\left(- \cos{\left(x \right)}\right)d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=-1$$$ et $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ :
$$- \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}}\right) = - \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} - {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}\right)$$
L’intégrale du cosinus est $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$ :
$$- \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\int{\cos{\left(x \right)} d x}}}\right) = - \tan{\left(1 \right)} \left(- x \cos{\left(x \right)} + {\color{red}{\sin{\left(x \right)}}}\right)$$
Par conséquent,
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = - \left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \tan{\left(1 \right)}$$
Simplifier:
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)}$$
Ajouter la constante d'intégration :
$$\int{\left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)d x} = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)}+C$$
Réponse
$$$\int \left(- x \sin{\left(x \right)} \tan{\left(1 \right)}\right)\, dx = \left(x \cos{\left(x \right)} - \sin{\left(x \right)}\right) \tan{\left(1 \right)} + C$$$A