Intégrale de $$$\sin^{2}{\left(\frac{x}{2} \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \sin^{2}{\left(\frac{x}{2} \right)}\, dx$$$.
Solution
Soit $$$u=\frac{x}{2}$$$.
Alors $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = 2 du$$$.
Donc,
$${\color{red}{\int{\sin^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sin^{2}{\left(u \right)} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=2$$$ et $$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$ :
$${\color{red}{\int{2 \sin^{2}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sin^{2}{\left(u \right)} d u}\right)}}$$
Appliquer la formule de réduction de puissance $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ avec $$$\alpha= u $$$:
$$2 {\color{red}{\int{\sin^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$ :
$$2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}} = 2 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}$$
Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:
$$- \int{\cos{\left(2 u \right)} d u} + {\color{red}{\int{1 d u}}} = - \int{\cos{\left(2 u \right)} d u} + {\color{red}{u}}$$
Soit $$$v=2 u$$$.
Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.
Par conséquent,
$$u - {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = u - {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :
$$u - {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = u - {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :
$$u - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{2} = u - \frac{{\color{red}{\sin{\left(v \right)}}}}{2}$$
Rappelons que $$$v=2 u$$$ :
$$u - \frac{\sin{\left({\color{red}{v}} \right)}}{2} = u - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{2}$$
Rappelons que $$$u=\frac{x}{2}$$$ :
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{2} + {\color{red}{u}} = - \frac{\sin{\left(2 {\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2} + {\color{red}{\left(\frac{x}{2}\right)}}$$
Par conséquent,
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x}{2} - \frac{\sin{\left(x \right)}}{2}$$
Simplifier:
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x - \sin{\left(x \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x - \sin{\left(x \right)}}{2}+C$$
Réponse
$$$\int \sin^{2}{\left(\frac{x}{2} \right)}\, dx = \frac{x - \sin{\left(x \right)}}{2} + C$$$A