Intégrale de $$$\frac{\sin{\left(5 x - 3 \right)}}{t}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{t}$$$ et $$$f{\left(x \right)} = \sin{\left(5 x - 3 \right)}$$$ :
$${\color{red}{\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x}}} = {\color{red}{\frac{\int{\sin{\left(5 x - 3 \right)} d x}}{t}}}$$
Soit $$$u=5 x - 3$$$.
Alors $$$du=\left(5 x - 3\right)^{\prime }dx = 5 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{5}$$$.
Donc,
$$\frac{{\color{red}{\int{\sin{\left(5 x - 3 \right)} d x}}}}{t} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{t} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{t}$$
L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{5 t} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{5 t}$$
Rappelons que $$$u=5 x - 3$$$ :
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{5 t} = - \frac{\cos{\left({\color{red}{\left(5 x - 3\right)}} \right)}}{5 t}$$
Par conséquent,
$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sin{\left(5 x - 3 \right)}}{t} d x} = - \frac{\cos{\left(5 x - 3 \right)}}{5 t}+C$$
Réponse
$$$\int \frac{\sin{\left(5 x - 3 \right)}}{t}\, dx = - \frac{\cos{\left(5 x - 3 \right)}}{5 t} + C$$$A